skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhou, Yiyi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. High Voltage Direct Current (HVDC) technology is a cornerstone of efficient Offshore Wind Farm (OWF) power transmission. This review examines the integration of HVDC technology in OWFs, considering collection and transmission aspects. The analysis is structured around four key dimensions: economic considerations, connection topologies, converter designs, and technical modeling. It begins with an in-depth economic analysis, evaluating cost-effectiveness, reliability, and market dynamics, focusing on investment, operational costs, and lifecycle expenses. Building on this foundation, the review explores various collection and transmission architectures, highlighting their technical and economical trade-offs, and evaluates power converter designs for efficiency, reliability, and offshore adaptability. Finally, advanced modeling and simulation techniques are reviewed to optimize system performance, enhance reliability, and balance computational efficiency. Throughout each of the four sections, economic and technical constraints are considered together. This helps to improve understanding of how systems can be designed in a way that meets the constraints of both fields and to enhance feasibility on both dimensions. These insights provide a holistic framework for sustainable and economically viable Offshore Wind Energy (OWE) integration. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026